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A vortex particle method is developed for simulating two-dimensional, unsteady
compressible flow. The method uses the Helmholtz decomposition of the velocity
field to separately treat the irrotational and solenoidal portions of the flow, and the par-
ticles are allowed to change volume to conserve mass. In addition to having vorticity
and dilatation properties, the particles also carry density, enthalpy, and entropy. The
resulting evolution equations contain terms that are computed with techniques used
in some incompressible methods. Truncation of unbounded domains via a nonre-
flecting boundary condition is also considered. The fast multipole method is adapted
to compressible particles in order to make the method computationally efficient. The
new method is applied to several problems, including sound generation by corotating
vortices and generation of vorticity by baroclinic torque. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The Lagrangian nature of incompressible vortex particle methods makes them an inter-
esting alternative to fixed-grid computational schemes such as finite-difference and spectral
methods. Our motivation lies in exploiting their properties, to the maximum extent possible,
for compressible flows, including those involving sound generation.

The importance of vorticity in sound generation has been established by many investiga-
tors. Chu and Kovásznay [7] presented an analysis of the higher order interactions between
the three basic modes of fluctuation in the linearized equations of motion: the entropy mode,
the vortical mode, and the acoustic mode. Their analysis clearly exhibited the importance
of vorticity–vorticity and vorticity–acoustic interactions in the generation and processing
of sound. Powell [40] isolated a dipole-like term involving the vorticity on the right-hand
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side of an acoustic analogy. Howe [23] recast the equations in a different form, using the
stagnation enthalpy as the acoustic variable, thereby retaining the dipole source of Powell
but without the density. Möhring [32] attempted to circumvent the difficulties associated
with a source term that required knowledge of both the local vorticity and the velocity by
forming an expression that was linear in the vorticity (and hence linear in the velocity).
For flows of low Mach number, his formula provides knowledge of the acoustic far field
based on the vorticity alone. Clearly a numerical method which emphasizes the motion of
vorticity in a compressible medium can be used to further explore, and possibly exploit, the
relationship between vorticity and sound. Furthermore, the present method will inherently
decouple the velocity into irrotational and solenoidal components; these can be exploited
in an acoustic investigation.

The development and application of incompressible vortex methods are described in
several detailed reviews [29, 43] and a recent book by Cottet and Koumoutsakos [9]. We
utilize several recent developments in incompressible vortex methods to make the extension
to compressible flows. These include the deterministic method for the treatment of diffusion
developed by Degond and Mas-Gallic [12], now referred to as particle strength exchange
(PSE). As we show in [14], PSE also furnishes a useful framework for treating other
physical phenomena, such as wave propagation. The expensive summation operation that
once prohibited simulations of particle systems involving more than a few thousand particles
has been alleviated with the development of fast methods, such as the fast multipole method
of Greengard and Rokhlin [21]. These methods reduce the number of direct particle–particle
interactions by computing interactions between clusters of particles where possible.

Particle methods have been used previously in the context of compressible flows. The
method of smoothed particle hydrodynamics (SPH), first introduced by Gingold and
Monaghan [19, 34], was originally used for astrophysical fluid dynamic applications. It
relies on the same principle of kernel estimation as used by vortex methods, although it
focuses on the velocity as the primary variable instead of the vorticity. Since its conception
SPH has been used in several contexts outside of astrophysics: Monaghan and Gingold [37],
and later Monaghan [36], applied the method to a shock-tube simulation using a special
artificial viscosity to suppress spurious oscillations. The method has also been used for com-
puting the Rayleigh–Taylor instability [35] and for blast waves. Anderson [3] developed a
vortex method for flows in which the fluctuations in the density are small enough that the
Boussinesq approximation is applicable. His method avoids computing the density gradient
in the external force term by tracking this quantity directly rather than the density itself.
The transport-element method developed by Krishnan and Ghoniem [26] is an extension of
this approach, except that it uses the observation that the density gradient in such a flow is
proportional to the length of a material line element or, alternatively, the distance between
neighboring computational elements. The method has been applied to the Rayleigh–Taylor
instability [26] and to the investigation of combustion in shear layers [45].

Research in combustion and reacting flows has led to advances in the capabilities of
vortex methods when compressibility effects are present, some of which are evident in the
present method. Ghoniem, Chorin, and Oppenheim [18] used the random vortex method [6]
in conjunction with a flame propagation algorithm to study combustion. Though thermal
effects are neglected in their vorticity evolution, the fluid dilatation behind the flame front
is accounted for in the velocity field by using regularized volume sources collocated with
the vortex particles, a technique that will be employed in the present work. Quackenbush
et al. [41] developed a vortex method in which the density and reacting components are
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transported by the particles along with the vorticity. The particle volumes are allowed to
change to conserve mass, which is a crucial element of the present method. The baroclinic
term in their method is accounted for through a “Lagrangian” reformulation, using the
material derivative of the velocity in place of the pressure gradient. By assuming low
Mach number, they allow the density to change only with temperature, thus simplifying the
particle equations. Finally, Daeninck and Winckelmans [11] have computed nonisothermal
incompressible flows by tracking the temperature along with the vorticity.

Sound generation has also been explored using incompressible vortex methods. Knio,
Collorec, and Juvé [24] explored the sound emission from a complex system of vortices
by simulating their motion in an incompressible medium and then computing the far-
field sound using both the Powell–Hardin formulation and the Möhring analogy. Pothou
and co-workers [39] used both the vortex particle and the vortex filament methods for
three-dimensional simulations; they calculated the resulting acoustic field with acoustic
analogies. Both of these investigations relied on the assumption of low Mach number to
ignore compressibility effects in the flow region.

The present method does not rely on a low Mach number assumption. Inevitably some
of the strength of vortex methods is compromised when applied to general compressible
flows. Because the computational elements will carry radiating quantities in addition to
vorticity, the region that they fill will necessarily be larger. But incompressible simulations
that include viscosity require a surrounding buffer of particles with zero vorticity that accept
the diffused quantity; in the present method waves will be allowed to propagate by the same
principle and thus particle coverage need not be significantly larger, especially if sufficiently
general boundary conditions may be developed. We propose a simple, but limited, technique
in the present work.

The compressible method, which we refer to as the dilating vortex particle method
(DVPM), is developed progressively, relying on existing techniques where possible. In
Section 2 the Helmholtz decomposition of the velocity field will allow incorporation of the
dilatation of fluid elements into the determination of the velocity. Computational elements
that expand and contract according to the dilatation are introduced in this section, as well as
a set of equations governing their strengths based on the compressible equations of motion.
Domain truncation is dealt with in Section 3; a scheme based on Engquist and Majda’s local
boundary conditions [15] is described using the one-sided derivative treatment developed
in [14]. In Section 4 other points for practical implementation are discussed, including the
adaptations of the fast summation method and particle remeshing. Finally, the method is
demonstrated on two model problems in Section 5. Conclusions and future extensions of
the method are discussed in Section 6.

2. METHOD DESCRIPTION

2.1. Velocity Decomposition

Consider the Helmholtz decomposition of the velocity field, u = us + uir , where us ≡
∇ × A, uir ≡ ∇ϕ, and A is chosen to be solenoidal. Taking the curl and the divergence of
this relation leads to, respectively,

∇2A = −∇ × u ≡ −ω,
(1)∇2ϕ = ∇ · u ≡ θ.
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From hereon the flow is assumed to be two-dimensional, so the vorticity and the vec-
tor potential each have only a single component: ω= ωê3 and A = ψ ê3. Equations (1)
will be solved using the two-dimensional Green’s function for the negative Laplacian, G =
− 1

2π
log |x|. This inversion produces expressions for the potentials (within arbitrary

constants)

A = G 	 ω,
(2)

ϕ = −G 	 θ,

where 	 denotes convolution. If present, an extra irrotational, solenoidal component could
be added to either expression; it will be ignored here. Substitution of these expressions into
the velocity decomposition above leads to a relation for the velocity in terms of the vorticity
and dilatation

u = (K×) 	 ω − K 	 θ, (3)

where

K(x) ≡ ∇G(x) = − x
2π |x|2 . (4)

The first term on the right-hand side of (3) is the Biot–Savart integral, and the second is its
counterpart in dilatation.

In a traditional vortex particle method the vorticity field is approximated (interpolated)
by a set of regularized particles, or “blobs,” each of which possesses its own distribution of
vorticity

ω̃(x, t) =
∑

p

�p(t)ζε(x − xp(t)), (5)

where �p = Vpωp, ωp = ω(xp), Vp is the particle volume, ζε is the blob function scaled by ε,
the radius of the blob ζε(x) = ζ(x/ε)/ε2, and xp is the particle position. The particles are
material elements and thus their positions change according to the local fluid velocity:

dxp

dt
= u(xp). (6)

The approximation (5) is introduced to the velocity expression (3) to account for the ro-
tational contribution. However, the velocity field is not completely specified without the
dilatation, so in the present method the particles will also carry the quantity

θ̃ (x, t) =
∑

p

Q p(t)ζε(x − xp(t)), (7)

where Q p = Vpθp and θp = θ(xp). The regular distribution of these quantities serves to
desingularize the velocity kernels [6]. Thus, the ODE that governs the particle positions is

dxp

dt
=
∑

q

�q(t)Kε(xp − xq) × ê3 −
∑

q

Qq(t)Kε(xp − xq), (8)

where Kε = K 	 ζε is the smoothed velocity kernel. Such a formula that accounts for contri-
butions from both vorticity and fluid dilatation has been used previously in particle methods
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[18, 41]. Accounting for the radial symmetry of the blob function, we obtain

Kε(x) = − x
2π |x|2 q(|x|/ε), (9)

where q(r) ≡ 2π
∫ r

0 τζ(τ ) dτ . Equation (8) exhibits the collaborative character of the vor-
tex method. Each particle “induces” a velocity relative to it that is part azimuthal and part
radial. The superposition of all of the particles’ contributions defines the velocity field to
which each particle is subjected.

The convergence of the incompressible vortex blob method has been demonstrated by
Hald [22] and later by Beale and Majda [4], Raviart [42], and Anderson and Greengard [2].
In each it is shown that the errors in the method arise because of the smoothing of the velocity
kernel and the discretization of the vorticity field by particles. A necessary constraint for
convergence is that the particles overlap; i.e., the ratio of blob radius to particle spacing,
κ = ε/�x , must be greater than unity. In the present method, no additional errors have been
introduced by including the dilatational component in the velocity field. The smoothing
error is determined by the choice of blob function ζ ; the order of accuracy r is dependent
upon ζ satisfying a set of conditions on its moments,∫

ζ(x) dx = 1,

(10)∫
xα1

1 xα2
2 ζ(x) dx = 0, |α| ∈ [1, r − 1],

where α = (α1, α2) is a multi-index and |α| = α1 + α2. We refer the reader to [5, 47] for a
more complete discussion of the construction of the blob function. The construction is very
similar to that of PSE kernels and interpolation kernels (see [14] and Section 4.2). In our
implementation we use a Gaussian template (Eq. (28)). The second-order-accurate function
derived from this template is the commonly used Gaussian ζ(x) = 1

π
e−|x|2 . With this choice

the smoothed velocity kernel becomes

Kε(x) = − x
2π |x|2

(
1 − e−|x|2/ε2)

. (11)

However, we use a higher order accurate function for our applications, as described in
Section 5.

2.2. Equations of Motion

For Eq. (8) to be useful, the values of the vorticity and dilatation of every particle must be
known. A set of equations that governs their evolution is developed by taking the curl and
divergence of the momentum equations, respectively. For simplicity, the medium is assumed
to be a calorically perfect monatomic gas. The properties (i.e., the dynamic viscosity, thermal
conductivity, and specific heats) are assumed constant and uniform, which is valid in the
absence of large temperature variations. The bulk viscosity is neglected—acceptable for a
nonreacting monatomic gas [27]—although it can easily be introduced. In addition to the
vorticity and dilatation, the flow is described by the specific enthalpy h, the specific entropy
s, and the density ρ. Although only two variables are needed, the equations have a more
compact form when expressed in terms of these three variables. The particle representations
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of these variables are

f̃ (x, t) =
∑

p

Vp f pζε(x − xp(t)), (12)

where f is either h, s, or ρ. The variables are made dimensionless with a typical acoustic
scaling, using a characteristic flow length L , the speed of sound of the stagnant medium a∞,
the ambient density ρ∞, the dynamic viscosity µ, and the specific heat capacity at constant
pressure cp, such that

x̃ = x/L , ũ = u/a∞, ω̃ = ωL/a∞,

t̃ = a∞t/L , θ̃ = θ L/a∞, h̃ = h
/

a2
∞,

s̃ = (s − s∞)/cp, ρ̃ = ρ/ρ∞, ã2 = a2
/

a2
∞,

T̃ = cpT
/

a2
∞, �̃= �L2

/(
µa2

∞
)
.

This scaling naturally leads to an acoustic definition of the Reynolds number, Re = ρ∞a∞L/

µ, which can be related to a hydrodynamic definition through a characteristic Mach number:
R̃e = M0 Re, where M0 = U0/a∞ and U0 is a typical flow velocity. The Prandtl number is
Pr = µcp/k, where k is the thermal conductivity. Note that, because the medium is a perfect
gas, the temperature and the enthalpy are equivalent after nondimensionalization.

We begin with the momentum equation in dimensionless form (where the tildes have
been removed for brevity),

∂u
∂t

+ u · ∇u + ∇h = T ∇s + 1

Re

1

ρ

(
1

3
∇θ + ∇2u

)
. (13)

We now express the viscous terms in a slightly different form to emphasize their dependence
on the vorticity and dilatation, using the identity ∇2u = ∇(∇ · u) − ∇ × ∇ × u:

∂u
∂t

+ u · ∇u + ∇h = T ∇s + 1

Re

1

ρ

(
4

3
∇θ − ∇ × ω

)
. (14)

Taking the curl and divergence of this equation, respectively, results in the set of equations
for the vorticity and dilatation

Dω

Dt
= −ωθ + ω · ∇u + ∇ × (h∇s) + 1

Re
∇ ×

[
1

ρ

(
4

3
∇θ − ∇ × ω

)]
, (15a)

Dθ

Dt
= −∇2h − ∇u : (∇u)T + ∇ · (h∇s) + 1

Re
∇ ·
[

1

ρ

(
4

3
∇θ − ∇ × ω

)]
. (15b)

Note that in two-dimensional flow, the vortex-stretching term (the second term on the right-
hand side of (15a)) vanishes. We use the entropy form of the energy equation,

Ds

Dt
= 1

Re

�

ρh
+ 1

RePr

1

ρh
∇2h, (15c)

where the viscous dissipation term � is expressed as

� = |ω|2 + 2∇u : (∇u)T − 2

3
θ2. (15d)
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This form is especially convenient for computation because it shares with (15b) the same
double contraction of the velocity gradient tensor with its transpose. The continuity equa-
tion is

Dρ

Dt
= −ρθ, (15e)

and the enthalpy is governed by an equation that is derived from the energy (15c) and
continuity (15e) equations,

Dh

Dt
= −a2θ + γ

Re

�

ρ
+ γ

RePr

1

ρ
∇2h, (15f)

where γ is the ratio of specific heats (taken to be 1.4) and a2 = (γ − 1)h is the square of
the local speed of sound.

Evolution equations for the particle strengths are formed by appropriate treatment of the
terms contained in Eqs. (15a)–(15f). Much of the treatment is adapted from incompressible
vortex methods, but some new ideas are necessary. Most spatial derivative terms are approx-
imated by PSE, which was originally developed for use in convection–diffusion equations
[12] but is extendable to more general contexts. The reader is referred to [14] for further
discussion of the treatment; in essence, the differential operator Dβ (β is a multi-index
denoting the number of derivatives in each direction) is replaced by an integral operator
Lε,

Dβ f (x) ≈ Lε f (x) = 1

ε|β|

∫
IR2

( f (y) ∓ f (x))ηβ
ε (x − y) dy, (16)

where ηβ is the PSE kernel appropriate for this derivative operator and ηε(x) = η(x/ε)/ε2.
The sign is chosen depending on the order of derivative (− for even derivatives and + for
odd) because of the conservation that these choices allow, as will be discussed shortly. The
integral is subsequently discretized by a quadrature over the particles:

Dβ f (xp) ≈ 1

ε|β|
∑

q

Vq( fq ∓ f p)η
β
ε (xp − xq). (17)

With the appropriate sign chosen, application of (17) in many contexts results in the exact
conservation of important global quantities. For example, if the quantity f is governed
by a convection–diffusion equation in an unbounded domain, the volume integral of f is
time-invariant. When (17) is applied to the Laplacian in this equation, the discrete analog
of the volume integral

∑
p Vp f p is exactly conserved because of the skew symmetry of the

terms in the summation and the evenness of the kernel used for Laplacian approximation.
Failure to conserve a quantity such as this (e.g., the circulation) can dramatically affect the
results of a simulation.

PSE is used for Laplacian terms, as well as for the first derivatives of enthalpy, entropy,
dilatation, and vorticity, with separate kernels used for each order of derivative. It should
be noted that (17) has been used with β = 2 (the Laplacian) extensively in vortex methods
(see, e.g., [25, 47]) and with β = 1 (the gradient) in, for example, SPH [34]. Quackenbush
et al. [41] used the β = 1 form to compute the gradient of the density, although their formula
is not conservative. For the curl terms in (15a), the PSE operator is applied first to the inner
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derivatives and then to the outer derivatives only after the products have been evaluated;
a similar procedure is followed for analogous divergence terms in (15b). Following this
procedure ensures conservation of circulation, which would not be guaranteed if the curl
were first applied to each factor in the products and then the derivatives discretized. Note that
this explicit treatment of the derivatives in the baroclinic term differs from the “Lagrangian”
approach of replacing them with a term involving the material derivative of the velocity
(see, e.g., [41]).

Spatial derivatives in the velocity are treated somewhat differently. It is noted that the
double contraction term, ∇u : (∇u)T , resembles the vortex-stretching term in three dimen-
sions, for which Anderson and Greengard [2] have developed a scheme in which the gradient
operator is applied to the right-hand side of (8), acting directly on the smoothed velocity
kernels. Applying this technique leads to

(∇u)p =
∑

q

�q(t)∇Kε(xp − xq) × ê3 −
∑

q

Qq(t)∇Kε(xp − xq). (18)

The new kernel Rε = ∇Kε can be written in terms of ζ and q as

Ri j
ε (x) = ∂Kε,i

∂x j
(x) =

(
−ζε(x) + q(|x|/ε)

π |x|2
)

xi x j

|x|2 − q(|x|/ε)
2π |x|2 δi j .

Note that limr−>0 Ri j
ε (r) = 1

2ζε(0)δi j . As an example, if the second-order Gaussian function
is used, then

Ri j
ε (x) = 1

π |x|2
[

1 −
(

1 + |x|2
ε2

)
e−|x|2/ε2

]
xi x j

|x|2 − 1

2π |x|2
(
1 − e−|x|2/ε2)

δi j .

It is certainly appropriate to ask why a uniform treatment is not used for all spatial
derivatives; but velocity is not a primary variable, so PSE would not be appropriate for
approximating its derivatives. On the other hand, using the velocity derivative treatment for
derivatives of primary variables—in other words, applying the derivative operator directly
to the blob function—would be analogous to Fishelov’s method [17] for incompressible
flows. We chose to use PSE because of its conservation properties, however.

Fluid elements expand and contract in compressible flow, and the computational elements
will be allowed to do so as well. The particle volumes will thus change according to a
restatement of (15e):

dV p

dt
= Q p. (19)

This equation ensures that the Jacobian of the flow map is correctly accounted for in the
quadrature approximation of volume integrals. Given the initial density of a particle, the
density at subsequent times will be calculated through ρp(t) = ρp(0)Vp(0)/Vp(t). This
treatment explicitly ensures that the method conserves mass. It was also employed by
Quackenbush et al. [41] to account for fluid dilatation by the heat release of combustion.

It is useful to reformulate the equations for the vorticity and dilatation in terms of the
integral values of these quantities: the particle circulation �p and the source strength Q p.
This approach, when combined with (19), eliminates the θ term from Eq. (15a) and an
analogous term embedded in the double contraction term in Eq. (15b). The final set of
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equations for the particle strengths are written in particle-discretized form in the Appendix.
Since the method is Lagrangian, particle strengths are functions of time only and the material
derivatives in the continuous equations are replaced by ordinary time derivatives. Note that
particle strengths are used in place of field quantities in some terms (e.g., h pθp in (A.5f)),
which raises the question of the suitability of such a substitution, especially when the
particle locations become disordered. We proceed without proof, though our results will
demonstrate that the approach is adequate. These particle evolution equations may be solved
simultaneously using a standard time integration scheme, such as the fourth-order Runge–
Kutta method. Also needed are initial conditions for the primary variables. Often it may
be sufficient to set the initial dilatation and entropy to zero (unless the circumstances of a
particular problem require otherwise) and then compute the initial enthalpy from the initial
vorticity (or velocity, rather) through a solution of the Poisson problem,

∇2h = −∇us : (∇us)
T , (20)

which are the terms that remain from (15b), less a small viscous term. In many problems
these two terms will be in near-perfect balance, though individually much larger than
their sum. The ramifications of this behavior will be discussed in Section 4.2. Setting the
initial enthalpy in this manner effectively reduces the magnitude of the transient that results
from not specifying these initial conditions in an exactly consistent manner. With the initial
enthalpy and entropy of a particle specified, the initial particle density can then be computed
through

ρp(0) = [(γ − 1)h p(0)]1/(γ−1) exp

(
− γ

γ − 1
sp(0)

)
, (21)

which is the integrated form of the thermodynamic relation dh = T ds + dp/ρ, combined
with the perfect gas relation. Note that these particle strengths initially correspond with the
local field values of these quantities, so the use of this relation is justified. The particles are
initially located on a uniform Cartesian grid, with Vp(0) = �x2, where �x is the particle
spacing.

3. SPATIAL COMPACTNESS AND DOMAIN TRUNCATION

Extending a vortex particle method from its common use in hydrodynamics to compress-
ible flows introduces the issue of dealing computationally with an unbounded domain. In
hydrodynamics, an initially compact vorticity field will only spread as quickly as viscous
diffusion allows, and thus the extent of significant levels of vorticity remains limited for
moderate times. One of the major motivations for vortex methods is that the particles that
carry the vorticity define the computational domain, so the methods are efficient and in the
absence of solid boundaries all boundary conditions are implicitly accounted for by the
Biot–Savart integral. Compressible flows inherently contain radiated components, which
are not spatially compact. If this radiation is to be accommodated in a numerical method by
the exchange of strengths described above, then some means must be provided that allows
the outer particles to exchange strength with an infinite region exterior to the particles.
Furthermore, the integral for computing the irrotational component of the velocity (the
second term of Eq. (3)) must be addressed because its integrand does not confine itself to
the particle coverage.



380 ELDREDGE, COLONIUS, AND LEONARD

We note that in general it may be possible to retain some measure of the spatial com-
pactness associated with incompressible vortex methods in the extension to compressible
flow. It is known that the sources of acoustic waves can be written in terms that are linear in
the vorticity and entropy, provided that the stagnation enthalpy, B = h + 1

2 |u|2, is taken as
the acoustic variable.2 This shows, then, that the radiated acoustic field may only need to
be discretized to a distance after which its amplitude is small enough that its effect on the
particle’s motion may be neglected. In this external field, the irrotational flow is governed
by a linear wave equation. We believe that this feature could be exploited to obviate the
need for particle placement in this outer region, but we have not yet developed a systematic
procedure to carry it out.

Instead, we propose here a simpler approach, wherein particles are retained to a somewhat
larger distance into the acoustic field. At this distance, we merely truncate the computational
domain and apply an artificial boundary condition to attempt to allow for only outgoing
acoustic waves (i.e., we apply a so-called nonreflecting boundary condition). Nonreflecting
boundary conditions remain an active area of research (see reviews [20, 46]). While much
progress has been made in developing conditions for linear problems, nonlinear boundary
conditions are still in their nascent stage. It will be assumed that, away from the “source”
region (usually the region of rotational flow [23]), the particle velocities and fluctuations
in the other flow quantities will be much smaller than their characteristic values in the
source region. Under such conditions, the vorticity vanishes, products of fluctuations can
be neglected, dissipative mechanisms are insignificant except over large distances, and thus
the governing equations (15a)–(15f) reduce to the homogeneous linear wave equation,

∂θ

∂t
= −∇2h, (22a)

∂h

∂t
= −θ. (22b)

Thus, linear boundary conditions are justified.

3.1. Boundary Condition and Enforcement

The Engquist–Majda [15] hierarchy of conditions have been successful for a variety of
problems. The conditions are developed by forming a series of Padé approximations to the
Fourier-transformed pseudodifferential operator representation of Sommerfeld’s radiation
condition. The conditions are developed for both planar and circular boundaries. For most
problems, a circular rather than a rectangular domain is used to avoid complications at the
corners. When the term “boundary” is used here, it denotes the farthest extent of particle
coverage. The first member of the hierarchy is(

∂ f

∂t
+ ∂ f

∂r
+ f

2r

)
r=R

= 0, (23)

where R is the radius of curvature of the boundary and f is any quantity governed by the
linear wave equation. A means must be developed for enforcing the condition. We create a

2 This result is embodied in Howe’s acoustic analogy [23], but we refer here primarily to the form developed by
Möhring [33], for which the wave operator in the otherwise irrotational and isentropic media takes on a somewhat
simplified and self-adjoint form.
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new class of boundary particles, which lie on the periphery of the coverage in a “boundary
zone,” that has a different set of properties from the class of interior particles. The new
particles translate as the others do (albeit with a very small motion), but their enthalpy h p

is governed by

dh p

dt
= −

(
∂h

∂r

)
p

− (h p − h∞)

2Rp
(24)

instead of (the particle form of) Eq. (15f), where Rp is the radial distance of the particle from
the origin. Their dilatation, vorticity (which is zero by assumption), and entropy are held
constant. The boundary zone has a depth that depends on the blob radius of the particles;
typically only a depth of a few particles is required.

The spatial derivative in (24) is approximated using PSE. However, the technique of
approximating the derivative by a full-space integral is inaccurate. A kernel centered at
a point near the boundary expects to have information available from an approximately
circular (or in three dimensions, spherical) region surrounding the point. If any portion of
this region fails to intersect the computational domain, then the subsequent quadrature of
the integral will be poor. In these cases a half-space integral is used in lieu of the full-space
version (see [14]). The particle-discretized formula is described in the Appendix. If a line
(or plane) is drawn through the point in question, parallel to a tangent of the near boundary
(see Fig. 1), then the integration proceeds over the “inner” half space �L that contains the
domain. The quadrature of the integral will only involve particles located in the half disc
shown (or an analogous hemisphere in three dimensions), corresponding to the intersection
of the kernel support with the half space. Even this region may have portions that fail to
intersect the domain; for a circular boundary the nonintersecting portions will be wedge-
shaped. It can be shown, however, that the errors due to such portions scale with their areas,
which are small for modestly convex boundaries. The error from such a treatment can be
shown to be dominated by the incomplete annihilation of a cylindrical wave by Eq. (23);
for a general wave the leading-order error is O(R−5/2).

For the second term in Eq. (3), the integration is simply truncated at the boundary of
particle coverage. For most flows of interest, the irrotational component is significantly
smaller than the solenoidal, and furthermore the dilatation external to the domain is likely
to contribute very little to this small irrotational part.

Typical
boundary
particle

pParticles
affecting

p
Boundary

zone

x'

x'
1

2

Inner
half-plane

Ω
L

FIG. 1. Schematic of the boundary treatment.
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t = 0.0 t = 0.4 t = 0.8

t =1.2 t =1.6 t =2.0

FIG. 2. Results of simulation of enthalpy pulse. The dotted line represents the boundary of the domain.

3.2. Testing the Condition

The boundary treatment is tested by simulating a radially symmetric pulse of enthalpy
of strength 0.1% of the ambient value, offset slightly from the center of the computational
domain. For such a weak perturbation the equations of motion would reduce to the lin-
ear wave equation for the enthalpy and dilatation since particle velocities are negligible.
Nevertheless we use the full compressible equations in order to test the full method. An
eighth-order PSE kernel derived in [14],

ηlap(x) = 1

π

(
40 − 40|x|2 + 10|x|4 − 2

3
|x|6
)

e−|x|2 ,

is used in the interior for the Laplacian; surrounding the domain is a boundary zone with a
depth of four particles, enforcing Eq. (24) with the second-order one-sided kernel

ηL ,(1,0)(x) = − 4

π
x1(5 − 2|x|2)e−|x|2 .

The initial distribution of enthalpy is Gaussian with a radius 1/10 the radius of the domain,
and 13 particles are distributed across the diameter of the Gaussian. Thus, a total of 13,040
particles are used.

The results of the simulation are depicted in the panels of Fig. 2. As expected the pulse
spreads out in a cylindrical wave that travels at the correct speed (the times are given
in acoustic units). The wave front reaches the boundary and passes through it with very
little reflection—approximately 2% of the incident wave. This reflection can be reduced by
making the domain larger, thus decreasing the radius of curvature of the boundary.

4. OTHER ASPECTS

4.1. Fast Summation

Lagrangian numerical methods require certain modifications to make them useful for
large-scale computation. First of all, the velocity computation in (8) is inherently O(N 2),
which would prohibit simulations using more than a few thousand particles. Several fast
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summation methods have been developed for reducing this calculation to O(N log N ) or
O(N ). The fast multipole method (FMM) of Greengard and Rokhlin [21] treats the parti-
cles as monopoles and lumps their far-field interactions into interactions between clusters,
using formulas that shift the centers of the multipole expansions. A quad-tree structure is
used to group nearby particles together and precisely define the concepts of “near neigh-
bors” and “well separated.” Near-neighbor interactions are computed directly. The FMM is
adapted to the present method by regarding the particles as vortex-source superpositions.
It is convenient in two dimensions to describe physical coordinates in terms of the com-
plex variable z = x1 + i x2. Through this description the particle strength is also complex,
Sp = Q p − i�p. The velocity field induced on a distant point z by a cluster of m particles
centered at z0 is

F(z) = u1 − iu2 =
P∑

k=0

ak

(z − z0)k+1
,

where

ak = 1

2π

m∑
p=1

Sp(z p − z0)
k, k = 0, . . . , P,

and P is the truncated number of terms. The reader is referred to [21] for details of the
implementation. The velocity gradient tensor (18) can be computed efficiently with the
same method by using the derivative of the complex multipole expansion of the velocity
field. Thus, the velocity gradient induced by the same cluster on a point z is

F ′(z) = ∂u1

∂x1
− i

∂u2

∂x1
= −

P+1∑
k=1

kak−1

(z − z0)k+1
,

and the Cauchy–Riemann equations can be used to get the other components of the tensor.
Figure 3 depicts the CPU time required to complete a single time step on a 500-MHz Compaq
Alpha XP1000 workstation. The number of particles was varied from about 38,000 to about
277,000. The CPU time scales as O(N ) as predicted.
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FIG. 3. CPU time for several different particle populations.
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It is important to note that despite the description in terms of complex coordinates, the
FMM is not limited to two-dimensional flows. The method has been extended to three-
dimensional problems using the same basis of the multipole expansion, albeit with different
formulas that employ spherical harmonics and an oct-tree structure in lieu of the quad-tree.
Formulas are given in [16] and the appendix of [9] provides a useful discussion.

The FMM was originally designed for singular particles. Since the width of such particles
is zero, only one particle per box is required at the finest level of the quad-tree. A particle thus
only directly communicates with eight neighbors. However, the blobs used in the present
method have a finite size. For the multipole expansion of a cluster to be valid at a given
point, the members of that cluster should be indistinguishable from the singularities that
they are designed to resemble. This restriction necessitates larger boxes at the finest level
to ensure only direct interactions between particles that appear as blobs to one another.
As the number of particles is changed, the quad-tree must be adjusted to keep the number
of particles per box, Nbox, within a certain range: if Nbox is too small, then the near-
neighbor list is too small and important direct interactions are neglected; if Nbox is too
big, then the computation time is dominated by unnecessary direct near-neighbor interac-
tions.

The hierarchy of boxes used in the FMM provides a natural framework for efficiently
computing other pieces of the method. The PSE summations are truncated to include only
interactions between particles in near-neighbor boxes. This treatment is consistent with
the defining property of near neighbors, that particles only resemble blobs inside the near-
neighbor region, because PSE kernels are close cousins with the blob function and decay
with nearly the same rapidity. Although high-order-accurate PSE kernels certainly have
larger support than lower order ones, their support is still confined to the near-neighbor
region, and interactions beyond this region are neglected.

4.2. Remeshing

A second necessary modification of the basic method—remeshing—arises because of
the topology of the flow. The flow will often contain regions of high accumulated strain
where fluid elements have been stretched. Such behavior is reflected in those regions be-
coming sparsely populated with computational elements, thus violating the convergence
requirement of vortex methods that the blobs overlap. Particles must periodically be re-
distributed to prevent such accumulation. It is desirable to conserve global flow quantities
such as the mass, circulation, and angular impulse in this process. Interpolation of this type
was addressed by Schoenberg [44] and has proved an essential part of SPH [34] and vortex
particle methods [9].

Extra care must be taken when interpolating in the present method because of the sen-
sitivity of the acoustic field to even the smallest errors. This occurs because the first and
second terms on the right-hand side of (15b) are in many cases in near-perfect balance.
The slight imbalance, however, is crucial to the sound generation process (see, for example,
the singular perturbation analysis of [10]) and thus extremely important to accurate compu-
tation. Through trial and error, we have found that interpolation can degrade the smoothness
of the enthalpy and introduce an error that is subsequently amplified by PSE. This error can
overwhelm (15b) unless the interpolation error is substantially reduced. To ensure stability
in the DVPM, many common interpolation kernels, such as the M ′

4 kernel of [34], carry strin-
gent requirements of particle spacing and remeshing frequency. For instance, using the M ′

4
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kernel in the corotating vortex problem discussed below, we found that stability demands that
21 particles be placed across the diameter of each vortex and that the particles be remeshed
every step. We discovered that a higher order interpolation with some degree of smoothing as
described below, using kernels of Gaussian type, is much less restrictive, but at the cost of not
exactly conserving the global quantities (although the departure is only slight). For the same
problem, the sixth-order kernel derived presently requires only 13 particles and remeshing
only every 10 steps to remain stable. Further refinement reduces the smoothing, thus making
it necessary to remesh more frequently. In practice we remesh every one or two steps. This
frequency was chosen by trial and error; it proves to be quite difficult to develop a general rule
by which to measure acceptable grid distortion, as ultimately the decision must be problem-
specific.

It should be pointed out that the need for smoothing in remeshing is not new to vortex
methods. Cottet [8] found in his incompressible simulations of decaying two-dimensional
turbulence that a slightly dissipative remeshing scheme was necessary to prevent noise
build-up from preventing the self-organizing of small-scale vorticity into large coherent
eddies.

The interpolation can be expressed in a continuous sense as

f̃ (x) =
∫

Wσ (x − y) f (y) dy, (25)

where f̃ (x) is the new value of the function at position x, and Wσ (x) = W (x/σ)/σ 2 is
the interpolation kernel scaled by the interpolation radius σ , alternatively regarded as the
degree of smoothing in the interpolation. Ideally, f̃ (x) = f (x). However, we settle for
f̃ (x) = f (x) + O(σ r ), where r is the order of accuracy of the interpolation kernel. The
form of Eq. (25) is similar to the integral operator of PSE. Using the same Taylor expansion
approach here as in the PSE derivation of [14], we develop the relation

f (x) = 1

M(0,0)

[∫
Wσ (x − y) f (y) dy −

∞∑
j=1

j∑
k=0

(−σ) j

j!
D(k, j−k) f (x)M(k, j−k)

]
,

where the operator D(α1,α2) is defined as Dα = D(α1,α2) = ∂ |α|

∂x
α1
1 ∂x

α2
2

, where |α| ≡ α1 + α2,
and the moments Mα are defined as in [14],

Mα =
∫ ∞

−∞

∫ ∞

−∞
yα1

1 yα2
2 W (y) dy1 dy2. (26)

The conditions on these moments are given by

Mα =
{

1, α = (0, 0),

0, |α| ∈ [1, r − 1],
(27a)

as well as ∫ ∞

−∞

∫ ∞

−∞
|y|r |W (y)| dy1 dy2 < ∞. (27b)
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Note that these conditions are identical to those imposed on the blob function. We have
chosen to use a template that is the product of two one-dimensional polynomials and a
Gaussian,

W (x1, x2) = 1

π

(
m∑

j=0

γ j x
2 j
1

)(
m∑

j=0

γ j x
2 j
2

)
e−(x2

1 +x2
2 ), (28)

where m = r/2 − 1. Kernels of this family are more smooth than the M ′
4 kernel—the M ′

4

kernel does not have continuous derivatives at distances of one and two particle spacings
away—and thus have better stability properties. Through experience we have found that a
sixth-order kernel works well for interpolation:

W (x1, x2) = 1

π

(
15

8
− 5x2

1

2
+ x4

1

2

)(
15

8
− 5x2

2

2
+ x4

2

2

)
e−(x2

1 +x2
2 ).

The particle vorticity, dilatation, density, and entropy are interpolated using the discrete
analog of (25),

f̃ p =
∑

q

Wσ (x̃p − xq)Vq fq , (29)

where σ = 1.7�x , {Vp} are the old particle volumes, and {x̃p} are the new particle positions.
The integral moment conditions on W ensure the invariance of the corresponding integral

moments of the interpolated quantities during remeshing, some of which are governed by
physical conservation laws in two-dimensional flows. For instance, the zeroth moments
of density and vorticity—the mass and circulation, respectively—are conserved in such
flows. It is thus important that these quantities not change appreciably during remeshing.
By enforcing the conditions on the integral moments of W , the corresponding discrete
moment conditions (e.g.,

∑
p W (xp) = 1) are nearly satisfied.

5. RESULTS AND DISCUSSION

5.1. Corotating Vortex Pair

The method was first applied to a pair of identical vortices in a compressible medium. As
the vortices orbit each other they generate sound at a frequency of twice their rotation rate.
The problem has been explored by several researchers (e.g., Müller and Obermeier [38],
Yates [48]) and recently simulated by Mitchell, Lele, and Moin [31] using a compact finite-
difference method on a stretched grid. The initial configuration of the vortices is depicted
in Fig. 4. All quantities are scaled by the initial half spacing between the vortices R and
the ambient speed of sound a∞. For comparison with Mitchell et al. [31], each vortex is
Gaussian-distributed according to

ω = 1.25�0

πr2
0

e−1.25r2/r2
0 ,

where the circulation and radius of each vortex are �0 = −2π(0.7)−1 M0r0 and r0 = 0.15,
respectively. The circulation Reynolds number Re ≡ |�0|/ν is 7500, the vortex Mach num-
ber M0 ≡ U0/a∞ (where U0 is the maximum azimuthal velocity of a single Gaussian vortex)
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FIG. 4. Initial configuration of vortex pair.

is 0.56, and the Prandtl number is 0.7. With these flow parameters, the initial rotation time
is τ = 105 and the wavelength of sound is λ = 52.5. Such a large separation in the acoustic
and flow length scales qualifies the vortices as a compact source, which makes efficient
resolution of the problem difficult. Instead of attempting to capture both the near and far
fields simultaneously, the present investigation focused on the near-field dynamics only.
The method is capable of computing both, but without particles of variable size it cannot
compute both regions practically.

Initially, the flow is taken as homentropic and dilatation-free. The initial enthalpy is
deduced from a solution of the Poisson equation (20), which is solved with the same Green’s
function approach used to invert the potential equations (1). The particles are distributed
on a Cartesian grid inside a circular domain of radius R� with Ncore particles laid across
the diameter of each vortex; a boundary zone with a depth of four particles surrounds
the domain. The particles are remapped to the same Cartesian grid every nrm time steps.
A fourth-order Runge–Kutta scheme is used for time advancement with a time-step size
of �t = 0.009. The blob radius and particle spacing are related by ε = �x0.85. All of the
kernels used in the interior are eighth-order accurate, except for the one-sided boundary
kernel, which is second-order accurate.

Blob function: ζ(x) = 1
π

(
4 − 6|x|2 + 2|x|4 − 1

6 |x|6)e−|x|2

Laplacian: η(x) = 1
π

(
40 − 40|x|2 + 10|x|4 − 2

3 |x|6)e−|x|2

First derivative wrt xi : η(x) = xi
π

(−20 + 20|x|2 − 5|x|4 + 1
3 |x|6)e−|x|2

Bndry first deriv. wrt xi : ηL(x) = xi
π
(−20 + 8|x|2)e−|x|2

To verify that the method converges as the particle coverage is refined, we computed the
problem on a domain of radius R� = 2.5 and let Ncore = 10, 13, 20, and 40. The resulting
dilatation field at a point (x, y) = (0, 1.2), shown in Fig. 5, converges as the particles are
more densely packed. With 13 particles across each vortex core, the results are sufficiently
converged.

The results of the vorticity and dilatation fields from a computation with Ncore = 13,
R� = 4 (corresponding to about 83, 500 particles), and nrm = 2 are depicted in the series of
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FIG. 5. Dilatation at (x, y) = (0, 1.2). Ncore = 10, · · · · · ·; 13, —·—·—; 20, – – –; 40, —.
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FIG. 6. Vorticity (left) and dilatation (right) in corotating vortex pair.
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FIG. 6—Continued

panels of Fig. 6. Note that both fields are scaled by U0 and R for these figures. For the
dilatation panels, dark contours denote positive values and light denote negative. The con-
tour levels are as follows: for the first two time levels, the vorticity levels are in the range
[−23, −1] in increments of �ω = 1 and the dilatation levels are in [−0.06, 0.06] in incre-
ments of �θ = 0.006; the remaining four time levels have vorticity contours in [−2, −0.05]
in increments of �ω = 0.103 and dilatation contours in [−0.005, 0.005] in increments of
�θ = 0.0005. The first row of panels shows the fields soon after the initialization. An
acoustic transient is emitted from each core as the dilatation settles to the correct value;
the transient is not strong and exits the domain without significant reflection. A quadrupole
structure is observed in the dilatation in the next row of panels. The same structure was
observed by Mitchell et al. [31] as well as by Yates [48] in his Bernoulli enthalpy, a quantity
that is closely related to the dilatation. The configurations of both fields persist for several
rotations, though both quantities are diffused by viscosity over this duration, as observed in
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FIG. 7. Histories of the (a) total mass and (b) total circulation of the particles.

the third set of panels (in which the contour levels have been adjusted for better resolution
of the diffused magnitudes). After approximately four rotations the continual effects of
viscosity and compressibility force the cores to merge, depicted in the final three rows of
panels. The resulting dilatation field is a much weaker quadrupole centered at the core of the
new elliptical vortex. Further computation, not shown, reveals the axisymmetrization of the
core and thus the disappearance of the dilatation.

In viscous vortex methods, an important parameter is the grid Reynolds number, which
can be defined as Reh ≡ |ω|�x2/ν. When Reh = O(1), the smallest length scales in a
viscous flow will be well resolved. With Ncore = 13, the particle spacing is �x = 0.025, and
thus initially Reh,max ≈ 83. This value is significantly higher than the recommended value
of 1. However, computing the same flow with Ncore = 40, corresponding to Reh,max ≈ 7, did
not introduce any new structures. The fine structures in the flow do not appear until later
times, as depicted in Fig. 6, when the maximum vorticity has decreased substantially and
Reh,max = O(1).

The conservation properties of the DVPM are demonstrated by plotting the total mass
and circulation in the domain versus time in Fig. 7. The total mass of the particles rises by
less than 0.02% and the total circulation decays by less than 1%. The deviations are due
wholly to the fact that the interpolation kernel we have chosen does not exactly conserve
the zeroth moment of interpolated quantities, as discussed above. The change in circulation
is more dramatic than the change in mass: since only the difference in a particle’s den-
sity from the ambient value is interpolated, and |�ρ|/ρ∞ is small, the mass is less af-
fected by the interpolation error. Neither quantity changes enough to significantly affect the
results.

5.1.1. Kirchhoff surface. Provided that the computational domain extends into the
acoustic region, the entire far-field solution can be deduced from the limited acoustic
information available from the near-field simulation through the use of a Kirchhoff sur-
face. For a field quantity f governed by the linear, homogeneous wave equation in �e, the
Kirchhoff equation expresses its solution in this domain in terms of its boundary and initial
values.

In two dimensions, provided that the initial values of f and its derivative are zero in
the exterior domain and on its interior boundary ∂�e, the solution f (x, t) in �e can be
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expressed as

f (x, t) = 1

2π

∫
∂�e

∫ t∗

0

[(
∂ f

∂τ
+ f (y, τ )

t − τ + |x − y|
)

(êR · ny) − ∂ f

∂ny
(y, τ )

]
× dτ d S(y)√

(t − τ)2 − |x − y|2 . (30)

The time integral is integrated to the retarded time t∗ = t − |x − y|. The vector êR is the
unit vector from the surface position y in the direction of the observation point x; ny is the
inward normal at y (or outward from the interior region).

The choice of the variable f in part determines how far one must go from the nonlinear
source region to find the acoustic region. If, for example, the enthalpy is chosen, then
the region in which this variable is entirely acoustic is apparently quite distant from the
source. Outside of the vortical region, the enthalpy obeys Bernoulli’s equation: h = h∞ −
1
2 |u|2 − ∂χ

∂t , where χ is the scalar potential consistent with the velocity induced by the
vorticity. An asymptotic matching of the near- and far-field solutions reveals that, while an
expansion of ∂χ

∂t matches the outer solution term by term, the 1
2 |u|2 term has no counterpart

in the far field yet persists to large distances because it decays as 1/r2. A more appropriate
acoustic variable—consistent with the discussion in Section 3—is the stagnation enthalpy
B = h + 1

2 |u|2. In the irrotational region, B = B∞ − ∂χ

∂t , so it satisfies the acoustic equations
just outside of the vortical region; in the far field, B and h are equal.

The integrals of Eq. (30) are discretized in space and time. A circular Kirchhoff sur-
face of radius 3.5 surrounds the vortical region; at this radius it is sufficiently removed
from the edge of the computational domain to avoid corruption from the boundary treat-
ment. The stagnation enthalpy of each particle is computed from the results of the DVPM
simulation and the particle data are interpolated onto the surface control points. The time
derivative is computed from backward differencing, and the normal derivative is from a PSE
calculation.

The resulting pressure fluctuations—equal to the stagnation enthalpy after nondimension-
alizing—observed at one half-wavelength from the origin (on the y-axis) are depicted in
Fig. 8. Note that because of the symmetry of the problem each rotation of the vortices

FIG. 8. Pressure fluctuations observed at (x, y) = (0, 1
2
λ). Mitchell et al., –·–; DVPM and Kirchhoff surface

at Rs = 3.5, —; DVPM and Möhring analogy, · · · · · ·.
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corresponds to two wavelengths of sound. The magnitude and phase of the pressure agree
quite well for the first two rotations. The large spike in Mitchell’s data at the outset is
due to the acoustic transient. Such a spike is not exhibited in the present results because
the initial transient period is ignored in the Kirchhoff calculation. After a little more than
three rotations the vortices in Mitchell’s simulation merge, reflected by a small rise and
then quick decay of the pressure. Merger in the present simulation, though, is delayed by
an extra one-and-a-half rotations. As demonstrated by Melander et al. [30], incompressible
vortices which are initially separated by more than the critical distance for convective
merger persist in a “metastable” state for a duration dependent upon a viscous time scale.
The vortices eventually undergo convective merger, but the time at which this begins may
be quite sensitive to small perturbations. Thus, it is not surprising that merger occurs later
in our simulation.

5.1.2. Möhring analogy. The compactness of the vortical flow region allows the use of
one of several acoustic analogies for computing the far-field sound. The analogy proposed
by Möhring [32] and validated for this problem by Mitchell et al. [31] requires only the
third time derivative of the second moments of vorticity to calculate the pressure at points
outside of the source region. The expression for the pressure, adapted to two-dimensional
flow [31], is

p − p∞
ρ∞a2∞

= 1

8π

∫ ∞

0

[
d3 Q1

dt3
(t∗) cos(2θ) + d3 Q2

dt3
(t∗) sin(2θ)

]
dξ, (31)

where t∗ = t − (r/a∞) cosh(ξ) is a modified retarded time that reflects the dependence of
two-dimensional sound waves on all events prior to t − r/a∞. The expressions for Q1 and
Q2 are

Q1 ≡ 2
∫ ∫

xyω dx dy, Q2 ≡
∫ ∫

(y2 − x2)ω dx dy. (32)

Clearly Q1 and Q2 are available from an incompressible simulation of this flow using
existing methods; the far-field analysis considered here is only for completeness. The results
agree favorably with the Kirchhoff results and those of Mitchell et al. [31], as depicted in
Fig. 8.

5.1.3. Noncompact flow field. The difficult task of capturing both the near-field dy-
namics and the far-field acoustics is alleviated when the acoustic wavelength is not large
compared to the extent of the vortical region. As a further demonstration of the capabilities
of the DVPM, the same problem was simulated with larger vortex cores, r0 = 0.45, which
corresponds to a wavelength of λ = 17.5. Larger cores permit a larger region to be covered
by particles. Using the same number of particles as in the previous simulation, the compu-
tational domain was enlarged to a radius R� = 12. The resulting dilatation field at t = 81
is depicted in Fig. 9, with the contour levels saturated to elucidate the outer dilatation. At
the time shown, the vortices are merging. It is interesting to note that Mitchell et al. [31]
did not observe merger after five full rotations, or 175 units of time, using vortices of the
same size but with a much larger Reynolds number. The counter-clockwise tilting of the
dilatation structure in the outer regions is due to the phase lag of compressibility.
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FIG. 9. Dilatation field at a∞t/R = 81 for a noncompact vortex pair. The contours are saturated for clarity of
the outer dilatation field.

5.2. Baroclinic Generation of Vorticity

The previous example demonstrated the ability of the DVPM to capture the near-field
dilatation, although the effect of compressibility on the overall flow was quite weak. The
following problem exhibits the capabilities of the method when gradients in thermodynamic
quantities are integral to the flow. A planar enthalpy wave travels through an entropy in-
homogeneity, or spot, creating vorticity through the baroclinic source term. The resulting
vorticity field can be predicted analytically if the wave and spot are sufficiently weak in
magnitude. Suppose that the enthalpy has the initial distribution

h(x1, x2, 0) = h R + �h

2

[
tanh

(
x1 − xh

�xh

)
− 1

]
,

and the entropy has

s(x1, x2, 0) = s∞ + �s exp

[
− (x1 − xs)

2 + x2
2

σ 2
s

]
,

where �h > 0 and �s < 0. If both of these quantities are small relative to their ambient
values, and the entropy is smaller than the enthalpy |�s|/|�h| � 1, then the vorticity
approximately satisfies

∂ω

∂t
= ∇h × ∇s,

the enthalpy obeys the homogeneous linear wave equation, and the entropy is steady. The
enthalpy wave travels across the spot at a speed much faster than the velocity induced by
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the resulting counter-rotating vortex pair, whose distribution is given by

ω(x1, x2, t) = �s�h

[
tanh

(
x1 − xh − t

�xh

)
− tanh

(
x1 − xh

�xh

)]
(x2 − xs)e

−(x1−xs )
2−x2

2 ,

where the variables have been scaled by a∞ and σs . We used values of �h = 0.01, �s =
−0.0001, �xh = 0.5, xh = −3.5, and xs = 0. For the numerical solution we used particles
on a square grid of side length 10σs , with 25 particles across the entropy spot and a boundary
zone at the right (outgoing) boundary with a 4-particle depth, corresponding to a total of
14,637 particles. A time step size of a∞�t/σs = 0.01 was used. The vorticity that results
from the simulation is shown in Figs. 10 and 11. The agreement is very good.

FIG. 10. Vorticity generated by enthalpy wave/entropy spot interaction at (a) aRt/σs = 0.2, (b) 0.4, and
(c) 0.6. DVPM, —; exact, – – –.
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FIG. 11. Maximum vorticity generated by enthalpy wave/entropy spot interaction as a function of time.
DVPM, �; exact, —.

6. CONCLUSION

A vortex particle method for unsteady two-dimensional compressible flow has been de-
veloped. This method is the first Lagrangian method for simulation of the full compressible
equations of motion, though its construction has relied on existing techniques where pos-
sible. By using particles that are able to change volume and that carry vorticity, dilatation,
enthalpy, entropy, and density, the method satisfies the equations of motion. A scheme for
enforcing a nonreflecting boundary condition has also been introduced and successfully im-
plemented. The fast multipole method has been adapted to compressible particles for more
efficient implementation. The new vortex method has been applied to corotating vortices in
a compressible medium and to the baroclinic generation of vorticity, and the results agree
well with those of previous work or analytical prediction.

Though some previous methods included treatments of compressibility effects (e.g.,
[18, 41]) that were useful to the present development, those methods relied on simplifying
assumptions that would preclude direct simulation of the acoustic field. Because of the
small relative magnitude of the acoustic field, our method requires more delicate applica-
tion of techniques that have proven robust for incompressible vortex methods, for instance
computation of derivatives using PSE (which must now suppress dispersion of waves) and
interpolation during remeshing (which must preserve smoothness in the interpolated quan-
tities). This subtle balance comes as no suprise as workers in computational aeroacoustics
have long been cognizant of the need for high-order methods (e.g., Lele [28]).

We believe this method shows promise, but further developments are necessary to solve
problems of larger scale. A more “efficient” definition of the particles—for instance, a divi-
sion of the particles into those which are active and those which are passive in the velocity
induction—is currently being explored, possibly using domain decomposition techniques.
Such a division would permit simulations with two different time steps when the time scales
of physical phenomena in the flow are distinct. Along the same lines, an implementation
of the method with variably sized particles, which would allow more efficient resolution of
flows with disparate length scales, is under development. Such an extension would make
simultaneous solution of the near and acoustic fields practical. The boundary treatment pro-
posed here is sufficient for absorbing incident acoustic waves, but as discussed in Section 3,
it does not fully exploit the decomposition of the velocity at the heart of the method. A more
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natural scheme is currently being developed. Finally, using existing techniques for comput-
ing vortex stretching, we believe that the method is readily extendable to three-dimensional
flows.

APPENDIX: 2-D PARTICLE EVOLUTION EQUATIONS

Here we apply the treatments described in Sections 2 and 3.1 to the equations of motion
in two space dimensions and then write the particle evolution equations in their entirety. To
write them in their most “compact” forms, we define certain shorthand symbols. In PSE,
the difference of strengths between two particles is commonly used:

� fqp = fq − f p. (A.1)

Many different kernels are used in the method. For instance, in the particle velocities, the
regularized kernel is written as

Kε,pq = Kε(xp − xq), (A.2)

the regularized velocity gradient kernel is shortened to(
Ri j

ε

)
pq

= ∂Kε,i

∂x j
(xp − xq), (A.3)

and the PSE kernel is expressed as

η(α1,α2)
ε,pq = η(α1,α2)

ε (xp − xq), (A.4)

where the superscript indicates the α1th derivative in the x1 direction and the α2th derivative
in the x2 direction. Using this notation, the full equations are

dxp

dt
=
∑

q

�qKε,pq × ê3 −
∑

q

QqKε,pq , (A.5a)

d�p

dt
= Vp

ε2

∑
q,r

Vq Vr
(
hq(sr + sq)η

(0,1)
ε,qr + hp(sr + sp)η

(0,1)
ε,pr

)
η(1,0)

ε,pq

− Vp

ε2

∑
q,r

Vq Vr
(
hq(sr + sq)η

(1,0)
ε,qr + h p(sr + sp)η

(1,0)
ε,pr

)
η(0,1)

ε,pq

+ 1

Re

1

ε2

∑
q,r

{
Vp

ρq

[
4

3
(Vq Qr + Vr Qq)η

(0,1)
ε,qr + (Vq�r + Vr�q)η

(1,0)
ε,qr

]

+ Vq

ρp

[
4

3
(Vp Qr + Vr Q p)η

(0,1)
ε,pr + (Vp�r + Vr�p)η

(1,0)
ε,pr

]}
η(1,0)

ε,pq

− 1

Re

1

ε2

∑
q,r

{
Vp

ρq

[
4

3
(Vq Qr + Vr Qq)η

(1,0)
ε,qr − (Vq�r + Vr�q)η

(0,1)
ε,qr

]

+ Vq

ρp

[
4

3
(Vp Qr + Vr Q p)η

(1,0)
ε,pr − (Vp�r + Vr�p)η

(0,1)
ε,pr

]}
η(0,1)

ε,pq , (A.5b)

dQp

dt
= 2Vp

{∑
q,r

[
�q
(

R21
ε

)
pq − Qq

(
R11

ε

)
pq

][−�r
(

R12
ε

)
pr − Qr

(
R22

ε

)
pr

]
−
∑
q,r

[
�q
(

R22
ε

)
pq

− Qq
(

R12
ε

)
pq

][−�r
(

R11
ε

)
pr

− Qr
(

R21
ε

)
pr

]}
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− 1

ε2

∑
q

VpVq�hqpη
lap
ε,pq + Vp

ε2

∑
q,r

Vq Vr
(
hq(sr + sq)η

(1,0)
ε,qr

+ h p(sr + sp)η
(1,0)
ε,pr

)
η(1,0)

ε,pq + Vp

ε2

∑
q,r

Vq Vr
(
hq(sr + sq)η

(0,1)
ε,qr

+ h p(sr + sp)η
(0,1)
ε,pr

)
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ε,pq + 1

Re

1

ε2
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ρq
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4

3
(Vq Qr + Vr Qq)η

(1,0)
ε,qr

− (Vq�r + Vr�q)η
(0,1)
ε,qr

]
+ Vq

ρp

[
4

3
(Vp Qr + Vr Q p)η

(1,0)
ε,pr

− (Vp�r + Vr�p)η
(0,1)
ε,pr
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Re

1

ε2
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{
Vp
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[
4

3
(Vq Qr + Vr Qq)η

(0,1)
ε,qr

+ (Vq�r + Vr�q)η
(1,0)
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ρp

[
4
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(Vp Qr + Vr Q p)η

(0,1)
ε,pr
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(1,0)
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η(0,1)

ε,pq , (A.5c)

ds p

dt
= 1

Re

�p

ρph p
+ 1

RePr

1

ρph pε2

∑
q

Vq�hqpη
lap
ε,pq , (A.5d)

dV p

dt
= Q p, (A.5e)

dh p

dt
= −(γ − 1)h pθp + γ

Re

�p

ρp
+ γ

RePr

1

ρpε2

∑
q

Vq�hqpη
lap
ε,pq . (A.5f)

The viscous dissipation is computed as

�p = �2
p

V 2
p

+ 4

3

Q2
p

V 2
p

− 2

{∑
q,r

[
�q
(

R21
ε

)
pq − Qq

(
R11

ε

)
pq

][−�r
(

R12
ε

)
pr − Qr

(
R22

ε

)
pr

]
−
∑
q,r

[
�q
(

R22
ε

)
pq

− Qq
(

R12
ε

)
pq

][−�r
(

R11
ε

)
pr

− Qr
(

R21
ε

)
pr

]}
. (A.6)

In the boundary zone, Eq. (A.5f) is replaced by the particle form of the boundary condi-
tion (24)

dh p

dt
= − 1

Rpε

∑
q,Rq<Rp

Vq�h pq
(
ηR,(1,0)

pq x p,1 + ηL ,(0,1)
pq x p,2

)−
h p − 1

γ − 1

2Rp
, (A.7)

where Rp = |xp| =
√

x2
p,1 + x2

p,2 and the notation ηL ,(α1,α2) indicates that the kernel is the
left-sided kernel for approximating the (α1, α2) derivative. The linear combination of kernels
is used to approximate the gradient in the local radial direction (see Fig. 1). Equation (A.7)
holds for particles in the boundary zone, but the sum is over all particles, provided that
Rq < Rp. This criterion is used to establish that the sum is over the inner half plane,
as described in Section 3.1 and derived in [14]. Clearly this restriction corresponds to a
circle rather than a half plane, and the intersection of this region with the kernel support
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corresponds to a lens-shaped region rather than a semicircle, but the error is smaller than
the leading-order error in the boundary condition itself. Equation (A.7) is supplemented by
Eqs. (A.5a) (the boundary particles are allowed to move) and (A.5e). �p, Q p, and sp are
assumed constant in the boundary region.
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